

mod_asn: An Apache module to look up routing data

	Release

	1.6

	Date

	Feb 27, 2022

Contents:

	Introduction
	Performance

	Design notes

	Usage with MirrorBrain

	License

	Installation
	Prerequirements

	Installing the ip4r data type into PostgreSQL

	Creating the database table

	Config file for the import script

	Load the database with routing data

	Keep the data up to date

	Install the Apache module

	Configure Apache / mod_dbd

	Troubleshooting

	Configure mod_asn

	Testing

	Logging

	Upgrading
	Upgrading PostgreSQL (including ip4r data)

	Glossary

	Release Notes/Change History
	Release 1.6 (r100, Jan 7, 2014)

	Release 1.5 (r88, Sep 5, 2010)

	Release 1.4 (r79, Mar 27, 2010)

	Release 1.3 (r70, Jul 30, 2009)

	Release 1.2 (Jul 28, 2009)

	Release 1.1 (Jul 4, 2009)

	Release 1.0 (Mar 31, 2009)

	Older changes

Indices and tables

	Index

	Search Page

	Glossary

Introduction

This is the documentation for mod_asn. mod_asn is an Apache module doing
lookups of the autonomous system (AS) number, and the network prefix, that an
IP address is contained in.

It is written with scalability in mind. To do high-speed lookups, it uses the
PostgreSQL ip4r data type that is indexable with a Patricia
Trie algorithm to store network prefixes.

It comes with a script to create such a database, and update it with snapshots
from a router’s “view of the world”.

The module sets the looked up data as Apache env table variables, for
use by other Apache module to do things with it, or for logging – and it can
add the data as response headers to the client.

Example HTTP response headers:

HTTP/1.1 200 OK
Date: Thu, 12 Feb 2009 23:24:33 GMT
Server: Apache/2.2.11 (Linux/SUSE)
X-Prefix: 83.133.0.0/16
X-AS: 13237

Performance

The database with all ~250.000 prefixes is about 20-30MB in size in the form of
a PostgreSQL database. Without any tuning, it is able to do >3000 lookups per
second on a MacBook Pro (tested with random IPs, a single connection, and
client written in Python running on the same machine).

The Apache module is extremely lightweight.

Design notes

Performed with a Patricia Trie algorithm, the lookup is very efficient.
The Patricia Trie is a special radix tree that works it way from bit to bit,
starting at the most significant bit. At each bit, there are two alternative
“paths”. Or put another way, the space of prefixes is roughly divided in two
halfs at each point. The ip4r datatype achieves this by implementing an index
that works this way. Without the index, a full table scan would be required,
plus bitmask prefix match, for each of the ~250.000 candidate rows.

“Conventional” storage in databases is possible with a workaround, e.g. with
two long integers denoting each prefix in a MySQL database. But this would
require an SQL “between” query. An additional column would be needed to store
the prefix length, in order to find the closest match (the most narrow prefix).
The built-in inet/cidr data type in PostgreSQL doens’t help either because it
can’t be indexed. With conventional methods, only about 30 lookups per second
can be achieved with a database.

Having the data in a real database makes it accessible for other means as well;
for instance, it is easily possible to query it for the list of prefixes that
an AS announces. In addition, the storage in the database offers the
possibility to change and update the data (or even completely replace it) in a
simple way, by doing this in transaction, which means that it won’t block any
running queries.

The implementation here makes the database accessible through a request
processing handler inside Apache. For usage outside of Apache, a small
libpq-based standalone daemon could be written that queries the database.
Alternatively, a small handler could be written for mod_asn that does nothing
than read an IP address from a request body (or URL) and return the result
(effectively implementing such a specialized server within Apache).

One argument for the ip4r data type in PostgreSQL is that it is IPv6-ready.
Some IPv6 autonomous systems already exist (about 800 as of the beginning of
2009).

Usage with MirrorBrain

mod_asn can support mod_mirrorbrain (see http://mirrorbrain.org).
mod_mirrorbrain can use the data (set in the subprocess environment) for its
mirror selection algorithm.

The mb tool that comes with MirrorBrain provide means to query the database:

 # mb iplookup mirror.susestudio.com
130.57.19.0/24 (AS3680)
 # mb iplookup mirror.susestudio.com --all-prefixes
130.57.19.0/24 (AS3680)
130.57.0.0/16, 130.57.0.0/20, 130.57.19.0/24, 130.57.32.0/21, 137.65.0.0/16,
147.2.0.0/17, 151.155.0.0/16, 164.99.0.0/16, 192.31.114.0/24, 192.94.118.0/24,
192.108.102.0/24, 192.149.26.0/24, 195.109.215.0/24, 212.153.69.0/24

License

Copyright (c) 2008-2010 Peter Poeml <poeml@mirrorbrain.org> / Novell Inc.
Copyright (c) 2008-2014 Peter Poeml <poeml@mirrorbrain.org>
All rights reserved.

Licensed under the Apache License, Version 2.0 (the “License”);
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an “AS IS” BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Installation

Prerequirements

A recent enough version of the Apache HTTP server is required. 2.2.6 or later
should be used. In addition, the apr-util library needs to be 1.3.0 or newer.
This is because the DBD database pool functionality was developed mainly
between 2006 and 2007, and reached production quality at the time.

Installing the ip4r data type into PostgreSQL

You need to install the contributed ip4r data type into PostgreSQL. This
project is found at http://ip4r.projects.postgresql.org/. To install it,
a shared library needs to be built to be loaded into PostgreSQL, and an SQL
script needs to be run to make the data type known to PostgreSQL and install
functions that use it.

It would preferable to use a binary package if one exists for your operating
system:

	openSUSE/SLE rpm package:
	http://download.opensuse.org/repositories/server:/database:/postgresql/

The Debian package is called postgresql-8.4-ip4r or postgresql-8.3-ip4r. The
install command would look like this:

apt-get install postgresql-8.4-ip4r libapache2-mod-asn

	Gentoo portage overlay:
	http://github.com/ramereth/ramereth-overlay/tree

If a manual install is required, you need the PostgresSQL devel package of your
operating system and compile a shared library, following the procedure
described in the installation instructions provided with the software.

After installing the shared object by package or manual install, you will need
to run the SQL script provided with the ip4r sources:

su - postgres
psql -f /usr/share/postgresql/8.4/contrib/ip4r.sql template1 # on Ubuntu
psql -f /usr/share/postgresql-ip4r/ip4r.sql template1 # on openSUSE

template1 means that all databases that are created later will have the
datatype available. To install it onto an existing database, use your database
name instead of “template1”.

For instance, if you are on Debian, and you have an existing mirrorbrain
database, you would install the data type on it like this:

su - postgres
psql -f /usr/share/postgresql/8.4/contrib/ip4r.sql mirrorbrain # on Ubuntu
psql -f /usr/share/postgresql-ip4r/ip4r.sql mirrorbrain # on openSUSE

It is normal to see a a good screenful of output printed out by the above
psql command.

Creating the database table

Assuming that a database exists already, execute the following command to
install the pfx2asn table into it. The asn.sql file ships with
mod_asn:

psql -U <dbuser> -f asn.sql <dbname>

Note

The command creates a table named pfx2asn in the database named <dbname>.
Since the table name is used in some other places, so you should not change
its name.

Example: assuming the database already exists (when installing MirrorBrain) and
you are on Debian:

su - mirrorbrain
psql -f /usr/share/doc/libapache2-mod-asn/asn.sql

If you see some NOTICE printed out by the command, that’s normal; it’s due to
the default logging setup of PostgreSQL which is verbose.

Config file for the import script

New in version 1.1.

If you happen to have a MirrorBrain [http://mirrorbrain.org/] setup, you’ll
have a configuration file named /etc/mirrorbrain.conf, which is
automatically used by the asn_import script. No further
configuration is needed then. If you have several MirrorBrain instances, the
instance into which to import the data can be selected with the -b
commandline option.

Alternatively, you need to create config file with the database connection
info, named /etc/asn_import.conf, looking like this:

[general]
user = database_user
password = database_password
host = database_server
dbname = name_of_database

Load the database with routing data

The data is downloaded and imported into the database with the following
command:

asn_get_routeviews | asn_import

It is recommendable to run the command as unprivileged user, for safety
reasons (as any network client).

It might take a few minutes to download and process the data - about
30MB are downloaded, and the data is about 1GB uncompressed (as of
2009) (2010: 13MB compressed, 0.5G uncompressed). The script has to process
over 5 million entries, and it is optimized for that job.

In the postgresql database, the data set will be small again.

The command shown above can be used to update the database with fresh
routeviews data, by just running it again. This is explained in the next
section.

Keep the data up to date

The data changes almost constantly, but most of the changes will be microscopic
and won’t directly matter to you. However, you should regularly update from
time to time. A weekly (or even monthly) schedule could be entirely sufficient,
depending on what you use the data for.

Warning

You should be aware of the fact that routeviews.org kindly provides this data
to the public, and you should use their bandwidth with consideration.

Therefore, the MirrorBrain project provides a daily mirror at
http://mirrorbrain.org/routeviews/ containing the latest snapshot. This
location is used by the provided scripts.

The same command as you ran initially can be used to update the database with
fresh routeviews data, by just running it again. This works in production while
the database is in active use; it is done in a way that doesn’t block any
ongoing connections.

Note

The tarball with the data snapshot will be downloaded only if it doesn’t
exist already in the current working directory. To redownload it, remove the
file first.

A cron snippet for running the script daily to download and import the data
could look as shown below:

35 2 * * * mirrorbrain sleep $(($RANDOM/16)); asn_get_routeviews | asn_import

If you have a MirrorBrain setup, and possibly several MirrorBrain instances,
you could update each database like this:

update ASN data in all MB instances
35 2 * * * mirrorbrain sleep $(($RANDOM/16)); \
 for i in $(mb instances); do \
 asn_get_routeviews | asn_import -b $i; done

The sleep command serves to randomize the job time a bit, and allows the
example to be used verbatim. Also note that in the example the scripts are
called without the .py extension.

The data is downloaded to the user’s home directory in this case. Make sure the
script runs in a directory where other users don’t have write permissions.

Install the Apache module

There are binary packages of mod_asn at the following locations:

	openSUSE/SLE:
	http://download.opensuse.org/repositories/Apache:/MirrorBrain/

	Debian/Ubuntu:
	http://download.opensuse.org/repositories/Apache:/MirrorBrain/

	Gentoo portage overlay:
	http://github.com/ramereth/ramereth-overlay/tree

To manually build mod_asn, all you need to do normally is to use
apxs2 with -c to compile and -i to install the module:

apxs2 -ci mod_asn.c

To enable the module to be loaded into Apache, you typically will have to run a
command like the following - depending on your platform:

a2enmod asn

Configure Apache / mod_dbd

mod_dbd provides the database connection pool that is used by mod_asn. The
module needs to be loaded into Apache:

a2enmod dbd

The DBD module needs a database adapter which connects to the database.

Put the following configuration into server-wide context:

configure the dbd connection pool.
for the prefork MPM, this configuration is inactive. Prefork simply uses 1
connection per child.
<IfModule !prefork.c>
 DBDMin 0
 DBDMax 32
 DBDKeep 4
 DBDExptime 10
</IfModule>

As you might note, the cited configuration is relevant for threaded MPMs only.
If you plan to use the prefork MPM, you don’t need it. You should however
consider using a threaded MPM if you intend to serve high volumes of requests,
because it will scale better, which is partly due to the fact that the threads
within one process can share a common database pool, which results in fewer
connections that are better utilized, and persistance of connections.

The database driver needs to be configured as well, by putting the following
configuration into server-wide or vhost context. Make the file chmod
0640 and owned by root:root, because it will contain the database password:

DBDriver pgsql
DBDParams "host=localhost user=mb password=12345 dbname=mb connect_timeout=15"

Troubleshooting

If Apache doesn’t start, or anything else seems wrong, make sure to check
Apache’s error_log. It usually points into the right direction.

A general note about Apache configuration which might be in order. With most
config directives, it is important to pay attention where to put them - the
order does not matter, but the context does. There is the concept of directory
contexts and vhost contexts, which must not be overlooked. Things can be
“global”, or inside a <VirtualHost> container, or within a <Directory>
container.

This matters because Apache applies the config recursively onto subdirectories,
and for each request it does a “merge” of possibly overlapping directives.
Settings in vhost context are merged only when the server forks, while settings
in directory context are merged for each request. This is also the reason why
some of mod_asn’s config directives are programmed to be used in one or the
other context, for performance reasons.

The install docs you are reading attempt to always point out in which context
the directives belong.

Configure mod_asn

	
ASLookup

	

Simply set ASLookup On in the directory context where you want it to be
active. The shipped config (mod_asn.conf) shows an example.

	
ASSetHeaders

	

Set ASSetHeaders Off if you don’t want the data to be added to the HTTP
response headers. In that case, the lookup result is only available through the
env table for perusal of other Apache modules.

	
ASIPHeader

	

The client IP address looked up is the one that the requests originates from.
If mod_asn is running behind a frontend server and can’t see the original
client IP address, the frontend may pass the IP via a header and mod_asn can
look at the header instead. You can configure this like below:

ASIPHeader X-Forwarded-For

	
ASIPEnvvar

	

Alternatively, if you need to use mod_rewrite, you can also make mod_asn look
at any variable in Apache’s subprocess environment for the IP, for instance:

ASIPEnvvar CLIENT_IP

	
ASLookupDebug

	

ASLookupDebug can be set to On to switch on debug logging. This can be
done per directory.

	
ASLookupQuery

	

You may use the ASLookupQuery directive (server-wide context) to define a
custom SQL query. The compiled in default is:

SELECT pfx, asn FROM pfx2asn WHERE pfx >>= ip4r(%s) ORDER BY ip4r_size(pfx) LIMIT 1

Testing

Once mod_asn is configured, you should be able to verify that it works by doing
some arbitrary request and looking at the response:

 % curl -sI 'http://download.opensuse.org/distribution/11.1/iso/openSUSE-11.1-Addon-Lang-i586.iso'
HTTP/1.1 302 Found
Date: Fri, 26 Jun 2009 22:35:50 GMT
Server: Apache/2.2.11 (Linux/SUSE)
X-Prefix: 87.78.0.0/15
X-AS: 8422
X-MirrorBrain-Mirror: ftp.uni-kl.de
X-MirrorBrain-Realm: country
Location: http://ftp.uni-kl.de/pub/linux/opensuse/distribution/11.1/iso/openSUSE-11.1-Addon-Lang-i586.iso
Content-Type: text/html; charset=iso-8859-1

(The X-Prefix and X-AS headers are not present in the response if mod_asn
is configured with ASSetHeaders Off.

When testing with local IP addresses like 192.168.x.x, there’s not much to look
up. These addresses are reserved for local use (see RFC 1918 [https://datatracker.ietf.org/doc/html/rfc1918.html]). You could
however play with sending X-Forwarded-For headers, provided that you configured
“ASIPHeader X-Forwarded-For”, and can lookup arbitrary IPs thereby. You can use
curl with the following option, causing it to add an X-Forwarded-For
header with arbitrary value to the request headers:

% curl -sv -H "X-Forwarded-For: 128.176.216.184" <url>

It can be helpful to set ASLookupDebug On for some directory - you’ll see
every step which the module does being logged to the error_log.

Logging

Since the data being looked up is stored in the subprocess environment, it is
trivial to log it, by adding the following placeholder to the LogFormat:

ASN:%{ASN}e P:%{PFX}e

That’s it!

Questions, bug reports, patches are welcome at mirrorbrain@mirrorbrain.org.

Upgrading

Upgrading PostgreSQL (including ip4r data)

When upgrading PostgreSQL, it is important to look at the version number difference.
If the third digit changes, no special procedure is needed (except when the
release notes explicitely hint about it).

When the first or second digit change, then a dump-and-reload cycle is usually
needed.

For instance, when upgrading from 8.3.5 to 8.3.7 nothing needs to be done. When
upgrading from 8.3.7 to 8.4, you need to dump and reload.

You might want to follow the instructions that your vendor provides. If your
vendor doesn’t provide an upgrade procedure, be warned that the database needs
to be dumped before upgrading PostgreSQL.

See pg_dumpall(1) for how to dump and reload the complete database.

Warning

If your vendor’s upgrade procedure automatically saves the previous
PostgreSQL binaries in case they are needed later, the procedure might not
take into account that the ip4r.so shared object might need to be saved as well.
Hence, you might be unable to start the old binaries, when the ip4r shared
object has been upgraded already.

Hence, it is recommended that you do a complete dump of the databases before
upgrading, and load that after upgrading.

Note

When upgrading to 8.4, ident sameuser is no longer a valid value
in pg_hba.conf. Replace it with ident.

Glossary

	Apache env table
	Within the Apache HTTP server, a table that is maintained during request processing. It
is used by handlers that run during request processing to pass along arbitrary data to be
available in later phases. Hense the name, environment table.

	Autonomous system (AS)
	A collection of connected Internet Protocol (IP) routing prefixes under
the control of one or more network operators that presents a common
source files for one Sphinx project. See
http://en.wikipedia.org/wiki/Autonomous_system_number for more
information.

	ip4r data type
	An indexable data type for ranges of IPv4 addresses.
PostgreSQL has builtin data types for IP addresses and ranges (‘inet’ and
‘cidr’), but they cannot be indexed. See http://ip4r.projects.postgresql.org/

	MirrorBrain
	A download redirector and Metalink generator, which can use mod_asn to
refine the selection of content mirror servers. See http://mirrorbrain.org/

	Network prefix
	A topological space of addresses of networked computers grouped together,
which is significant for routing decisions. See
http://en.wikipedia.org/wiki/Subnetwork for a detailed introduction.

	Patricia trie
	A specialized data structure based on a so-called “trie”, used to store a
set of strings. In the case of IP addresses / network prefixes, it is known to perform
best for efficient lookups. See http://en.wikipedia.org/wiki/Radix_tree for more info.

Release Notes/Change History

Release 1.6 (r100, Jan 7, 2014)

This release adjusts for the API changes in Apache 2.4. Thanks Cristian
Rodriguez for the help. (issue 128 [http://mirrorbrain.org/issues/issue128], issue 129 [http://mirrorbrain.org/issues/issue129])

This release also fixes a bug in the asn_get_routeviews script: It
could fail when the BGP routing data snapshot contains bogus AS numbers. (issue 93 [http://mirrorbrain.org/issues/issue93])
Patch courtesy of agy.

asn_get_routeviews now allows to only download routing data, but
don’t process it, by using the switch --download-only. In addition,
--no-download can be used if the data is distributed by other means, e.g.
with distro updates. Thanks Dagobert Michelsen for the suggestion! (issue
127 [http://mirrorbrain.org/issues/issue127])

This release also adds documentation.

Release 1.5 (r88, Sep 5, 2010)

This release fixes one important bug, and improves documentation.

	mod_asn now avoids lookups of IPv6 addresses. The database of AS (autonomous
system) numbers is IPv4-only, and in addition, attempted lookups seem to
cause problems within the PostgreSQL ip4r contrib data type. The symptom
was a failure of the database after a while of running, and subsequent error
messages from Apache. See issue 58 [http://mirrorbrain.org/issues/issue58].

	The used version of the APR/APR-Util library is now checked when Apache
starts, and not when the module is compiled. This is useful to choose the
correct way to access the database, which unfortunately changed between the
1.2 and 1.3 (APR-Util) release. This change makes the deployment more robust,
because even if a user mixes packages from different distro versions on a
system, mod_asn will still work correctly. This improves the existing fix for
issue 7 [http://mirrorbrain.org/issues/issue7].

	The documentation has been updated with

	updated examples of Debian package names and filenames

	an improved example about installing onto an existing database

Release 1.4 (r79, Mar 27, 2010)

This release does not bring about significant user-visible changes, but under
the hood, some optimizations were done.

	For more efficient database connection usage, mod_asn now closes the used
connection when its handler quits. Before, a connection with lifetime of the
request was acquired; if a long-running handler runs after mod_asn, this
could mean that the connection is blocked for other threads until the end of
the request. This could occur, for instance, when mod_mirrorbrain ran later,
but exited early because a file was supposed to be delivered directly.
This was tracked in issue 44 [http://mirrorbrain.org/issues/issue44].

	Database errors from the lower DBD layer are now resolved to strings, where
available. In relation to this: if an IP address is not found it isn’t
necessarily an error, because it could be a private IP, for instance, which
is never present in global routing tables. That case is now logged with
NOTICE log level.

	When compiling mod_asn with the Apache Portable Runtime 1.2, different
semantics are used to access database rows, couting from 0 instead of from 1. It
seemed to work either way (maybe because only a single row is accessed), but
hopefully now it is done more correctly and therefore safer in the future.
See issue 29 [http://mirrorbrain.org/issues/issue29] and issue 7 [http://mirrorbrain.org/issues/issue7] for the context.

	In the documentation, the support scripts are now mentioned without their
.py suffix in the example for data import, which might be less
confusing.

Release 1.3 (r70, Jul 30, 2009)

	Bugs in the asn_get_routeviews and asn_import scripts were fixed:

	The logic which decided whether to download the routing data snapshot file
was fixed. If asn_get_routeviews is called and it finds a file
which was downloaded less then 8 hours ago, the file is reused. If no file
exists or the file is older than 8 hours, it is downloaded again.

	Deletion of existing entries in the database is now prevented, if not at
least one entry has been imported. This fixes a bug where the routing data
would be deleted if the script was called with no input.

Release 1.2 (Jul 28, 2009)

	asn_get_routeviews script:

	download data from the mirror [http://mirrorbrain.org/routeviews/]
provided by the MirrorBrain project, so routeviews.org doesn’t get
additional traffic by additional users downloading from them

	the documentation has been moved into a docs subdirectory, and rewritten in
reStructured Text format, from which HTML is be generated via Sphinx
(http://sphinx.pocoo.org/). When the documentation is changed in subversion,
the changes automatically get online on http://mirrorbrain.org/mod_asn/docs/

	documentation updates

	section Keep the data up to date added

	add Upgrading notes about PostgreSQL (8.4)

	install the new documentaion when building Debian or RPM packages

	“debian” subdirectory added, for Debian package builds

	the Subversion repository was moved to http://svn.mirrorbrain.org/svn/mod_asn/trunk/

Release 1.1 (Jul 4, 2009)

	mod_asn.c:

	bump version (1.1)

	update year in copyright header

	asn_import script:

	be able to read config from /etc/asn_import.conf or
/etc/mirrorbrain.conf; thus, the script doesn’t need to be edited
any longer with database configuration data and credentials.

	if a MirrorBrain config file is found, it is used (and the MirrorBrain
instance can be selected with -b on the commandline, if needed)

	alternatively, the script looks for a config file named
/etc/asn_import.conf.

	asn_get_routeviews script:

	handle the slightly changed format of routeviews data

	more sanity checks for parsing newer routing data

	INSTALL:

	add links to binaries for Debian and ebuilds for Gentoo

	add instructions for troubleshooting and testing

	correct a wrong example of loading mod_asn instead of mod_dbd

	added example for cron snippet for updating the routing database

	documentation about the newly supported config file

	add debian subdirectory for building Debian packages

Release 1.0 (Mar 31, 2009)

	mod_asn.c:

	fix bug that lead to ignorance of variables in the subprocess environment
set by ASIPEnvvar, which falsely looked for the wrong variable name (one
that was configured via ASIPHeader).

	document an example how to log the looked up data

Older changes

Please refer to the subversion changelog: http://svn.mirrorbrain.org/svn/mod_asn/trunk
respectively http://svn.mirrorbrain.org/viewvc/mod_asn/trunk/

Index

 A
 | I
 | M
 | N
 | P
 | R

A

 	
 	Apache env table

 	
 	Autonomous system (AS)

I

 	
 	ip4r data type

M

 	
 	MirrorBrain

N

 	
 	Network prefix

P

 	
 	Patricia trie

R

 	
 	
 RFC

 	RFC 1918

 nav.xhtml

 Table of Contents

 		
 mod_asn: An Apache module to look up routing data

 		
 Introduction

 		
 Performance

 		
 Design notes

 		
 Usage with MirrorBrain

 		
 License

 		
 Installation

 		
 Prerequirements

 		
 Installing the ip4r data type into PostgreSQL

 		
 Creating the database table

 		
 Config file for the import script

 		
 Load the database with routing data

 		
 Keep the data up to date

 		
 Install the Apache module

 		
 Configure Apache / mod_dbd

 		
 Troubleshooting

 		
 Configure mod_asn

 		
 Testing

 		
 Logging

 		
 Upgrading

 		
 Upgrading PostgreSQL (including ip4r data)

 		
 Glossary

 		
 Release Notes/Change History

 		
 Release 1.6 (r100, Jan 7, 2014)

 		
 Release 1.5 (r88, Sep 5, 2010)

 		
 Release 1.4 (r79, Mar 27, 2010)

 		
 Release 1.3 (r70, Jul 30, 2009)

 		
 Release 1.2 (Jul 28, 2009)

 		
 Release 1.1 (Jul 4, 2009)

 		
 Release 1.0 (Mar 31, 2009)

 		
 Older changes

_static/plus.png

_static/file.png

_static/minus.png

